Cerenkov radiation by charged particles in an external gravitational eld

نویسندگان

  • Anshu Gupta
  • Subhendra Mohanty
  • Manoj K. Samal
چکیده

Charged particles in the geodesic trajectory of an external gravitational eld do not emit electromagnetic radiation. This is expected from the application of the equivalence principle. We show here that charged particles propagating in an external gravitational eld with non-zero components of the Ricci tensor can emit radiation by the Cerenkov process. The external gravitational eld acts like an e ective refractive index for light. Since the Ricci tensor cannot be eliminated by a change of coordinates, there is no violation of the equivalence principle in this process. E-mail:[email protected] E-mail:[email protected] E-mail:[email protected] PRL-TH-95/12 July 1995 astro-ph/9509022

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the Brans-Dicke Gravitational Field by Cerenkov Radiation

The possibility that a charged particle propagating in a gravitational field described by Brans-Dicke theory of gravity could emit Cerenkov radiation is explored. This process is kinematically allowed depending on parameters occurring in the theory. The Cerenkov effect disappears as the BD parameter ω → ∞, i.e. in the limit in which the Einstein theory is recovered, giving a signature to probe ...

متن کامل

An approximate analytical solution of the Bethe equation for charged particles in the range of radiotherapy energy

Charged particles such as protons and carbon ions are an increasing tool in radiation therapy. However, unresolved physical problems prevent optimal performance, including estimating the deposited dose in non-homogeneous tissue, is an essential aspect of optimizing treatment. The Monte Carlo (MC) method can be used to estimate the amount of radiation, but, this powerful computing operation is v...

متن کامل

Secondary Particles Produced by Hadron Therapy

Introduction Use of hadron therapy as an advanced radiotherapy technique is increasing. In this method, secondary particles are produced through primary beam interactions with the beam-transport system and the patient’s body. In this study, Monte Carlo simulations were employed to determine the dose of produced secondary particles, particularly neutrons during treatment. Materials and Methods I...

متن کامل

The biological effects induced by high-charged and energy particles and its application in cancer therapy

The radiobiological effects of high atomic number and energy (HZE particles) ion beams are of interest for radioprotection in space and tumor radiotherapy. Space radiation mainly consists of heavy charged particles from protons to iron ions, which is distinct from common terrestrial forms of radiation. HZE particles pose a significant cancer risk to astronauts on prolonged space missions. With ...

متن کامل

Comparison of the Light Charged Particles on Scatter Radiation Dose in Thyroid Hadron Therapy

Bachground: Hadron therapy is a novel technique of cancer radiation therapy which employs charged particles beams, 1H and light ions in particular. Due to their physical and radiobiological properties, they allow one to obtain a more conformal treatment, sparing better the healthy tissues located in proximity of the tumor and allowing a higher control of the disease.  Objective: As it is well ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995